Efficient Processing of Models for Large-scale Shotgun Proteomics Data

Himanshu Grover, Ph.D. Vanathi Gopalakrishnan, Ph.D. University of Pittsburgh

C-Big 2012, Pittsburgh, USA 14th October, 2012

Outline

- Background on Proteins and Shotgun Proteomics
- Computational modeling framework:
 - Context-sensitive Peptide Identification (CSPI)
- Problem Statement
- Methods for efficient handling
- Challenges and Future Work

Amino Acids and Proteins

>IPI:IPI00000005.1 Tax_Id=9606 Gene_Symbol=NRAS GTPase NRas MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAG QEEYSAMRDQYMRTGEGFLCVFAINNSKSFADINLYREQIKRVKDSDDVPMVLVGNKCDL PTRTVDTKQAHELAKSYGIPFIETSAKTRQGVEDAFYTLVREIRQYRMKKLNSSDDGTQG CMGLPCVVM

>IPI:IPI00000115.1 Tax_Id=9606 Gene_Symbol=CNIH4 Isoform 1 of Protein cornichon homolog 4 MEAVVFVFSLLDCCALIFLSVYFIITLSDLECDYINARSCCSKLNKWVIPELIGHTIVTV LLLMSLHWFIFLLNLPVATWNIYRYIMVPSGNMGVFDPTEIHNRGQLKSHMKEAMIKLGF HLLCFFMYLYSMILALIND

Shotgun Proteomics: Protein/Peptide Identification

Database Searching

Predominant methodology for peptide ID from MS/MS

Fact !!

< 30% of spectra are confidently assigned with peptides

➢ Noise

➤ Variability

Inadequate scoring systems

Computational Bottlenecks

High volume and rate of data generation

- **24*7**
- 200 400 ^ 3 spectra per day from moderate sized labs
- Large protein databases: ~90 K protein sequences for Humans
 - Constrained searches:
 - ~5-10 ^ 6 unique peptides in database
 - ~10-20 ^ 3 peptides per spectrum
 - Unconstrained searches
 - Over billion peptides

Context-Sensitive Peptide Identification (CSPI) Framework Demystified Grover et. al. (2012), OMICS (submitted for publication)

> Novel probabilistic framework

Scalable and flexible

Specific Goal: Model influence of peptide physicochemical context on the observed peak heights (intensities) in fragmentation spectra

Input-Output Hidden Markov Models (IO-HMM)

CSPI Model Structure

Input Layer: Peptide Physicochemical Context

'Context' in the context of CSPI

Matching A Peptide with Experimental Spectra

Normalized Intensities in context of CSPI

Summary

Parameterization: Transition/Emission Functions

Parameter Estimation

Parameters to estimate per CSPI model (4 hidden states):

Over 700 (Logistic function weights, Emission distribution parameters)

Maximum Likelihood

Generalized Expectation Maximization algorithm (GEM)

Inference: Log-likelihood Ratio

Score: Log Likelihood Ratio

$$CSPI_Score = \log \left(\frac{P(\text{Spectrum intensities} \mid \text{PeptideSeq}; \ \Theta_{True})}{P(\text{Spectrum intensities} \mid \text{PeptideSeq}; \ \Theta_{Null})} \right)$$

Computed using Forward Procedure

Computational bottleneck

Database searching

- Extract candidate peptides (sub-strings) for each spectrum
- Candidate Peptides' scoring
 200-400 ^ 3 spectra * ~10-20 ^ 3 peptides
 - CSPI:
 - Increases performance but...
 - takes ~5-8 seconds per spectrum to evaluate candidates (under constrained searches)

Database Searching

Mass-range query

> Amino acids (characters) have masses

➤ Goal:

Search for sub-strings with a (roughly) specific mass

> Naïve Approach:

Scan the protein database for each query

Indexed Database Searching

Berkeley DB: key-value store

- Pre-compute
- ➢ Key: Mass of peptide
- Value: Location and length of peptide

Multiple index files

Time (per query): < 1 sec</p>

Challenge

- Works well for constrained database searches:
 - > Time to generate
 - > Size

Issues with unconstrained searches

Potential solution:

- Parallel generation and query
- Simple synchronization primitives and multiple index files facilitates

Candidate Peptide Scoring

Embarrassingly parallel

- For each spectrum, searching and scoring/ ranking is independent of others
- Utilize multiprocessing

Parallel Implementation

Parallel Implementation

Challenges and Potential Solutions

- Spectrum-level parallelization
- Candidate-level optimization can provide further gains:
 - Non-trivial:
 - Careful profiling of individual steps
 - IPC overhead vs. performance gain
 - Protein Database Size
 - Search Constraints

Conclusions and Future Work

- Complex and computationally intensive algorithms
- Collaborative efforts are required for robust analyses (evidence combination)
 - requires efficient processing
 - better parameter estimates
- Further efficiency improvements
- Other applications:
 - Time-series
 - Gene-Expression + Protein-expression
 - MicroRNA expression + Gene Expression
 - Stimulus/Response

Acknowledgements

► Funding Agencies:

 This work was supported in part by the following grants: NIGMS Award Number K25GM071951, NIH Award Number P41RR006009 and NLM Award Number R01LM010950 to Dr. Vanathi Gopalakrishnan.

Thanks

Questions?